Non-EEG seizure-detection systems and potential SUDEP prevention: State of the art

نویسندگان

  • Anouk Van de Vel
  • Kris Cuppens
  • Bert Bonroy
  • Milica Milosevic
  • Katrien Jansen
  • Sabine Van Huffel
  • Bart Vanrumste
  • Lieven Lagae
  • Berten Ceulemans
چکیده

PURPOSE There is a need for a seizure-detection system that can be used long-term and in home situations for early intervention and prevention of seizure related side effects including SUDEP (sudden unexpected death in epileptic patients). The gold standard for monitoring epileptic seizures involves video/EEG (electro-encephalography), which is uncomfortable for the patient, as EEG electrodes are attached to the scalp. EEG analysis is also labour-intensive and has yet to be automated and adapted for real-time monitoring. It is therefore usually performed in a hospital setting, for a few days at the most. The goal of this article is to provide an overview of body signals that can be measured, along with corresponding methods, state-of-art research, and commercially available systems, as well as to stress the importance of a good detection system. METHOD Narrative literature review. RESULTS A range of body signals can be monitored for the purpose of seizure detection. It is particularly interesting to include monitoring of autonomic dysfunction, as this may be an important patho-physiological mechanism of SUDEP, and of movement, as many seizures have a motor component. CONCLUSION The most effective seizure detection systems are multimodal. Such systems should also be comfortable and low-power. The body signals and modalities on which a system is based should take account of the user's seizure types and personal preferences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-EEG seizure detection systems and potential SUDEP prevention: State of the art Review and update

PURPOSE Detection of, and alarming for epileptic seizures is increasingly demanded and researched. Our previous review article provided an overview of non-invasive, non-EEG (electro-encephalography) body signals that can be measured, along with corresponding methods, state of the art research, and commercially available systems. Three years later, many more studies and devices have emerged. Mor...

متن کامل

Epileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier

Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...

متن کامل

Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy

Nearly one-third of patients with epilepsy continue to have seizures despite optimal medication management. Systems employed to detect seizures may have the potential to improve outcomes in these patients by allowing more tailored therapies and might, additionally, have a role in accident and SUDEP prevention. Automated seizure detection and prediction require algorithms which employ feature co...

متن کامل

Newborn EEG Seizure Detection Based on Interspike Space Distribution in the Time-Frequency Domain

This paper presents a new time-frequency based EEG seizure detection method. This method uses the distribution of interspike intervals as a criterion for discriminating between seizure and nonseizure activities. To detect spikes in the EEG, the signal is mapped into the time-frequency domain. The high instantaneous energy of spikes is reflected as a localized energy in time-frequency domain. Hi...

متن کامل

Epileptic seizure detection based on The Limited Penetrable visibility graph algorithm and graph properties

Introduction: Epileptic seizure detection is a key step for both researchers and epilepsy specialists for epilepsy assessment due to the non-stationariness and chaos in the electroencephalogram (EEG) signals. Current research is directed toward the development of an efficient method for epilepsy or seizure detection based the limited penetrable visibility graph (LPVG) algorith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Seizure

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2013